Greedy defining sets of graphs
نویسنده
چکیده
For a graph G and an order a on V(G), we define a greedy defining set as a subset S of V(G) with an assignment of colors to vertices in S, such that the pre-coloring can be extended to a x( G)-coloring of G by the greedy coloring of (G, a). A greedy defining set ofaX( G)-coloring C of G is a greedy defining set, which results in the coloring C (by the greedy procedure). We denote the size of a greedy defining set of C with minimum cardinality by G D N (G, a, C). In this paper we show that the problem of determining GDN(G,a,C), for an instance (G,a,C) is an NP-complete problem.
منابع مشابه
More results on greedy defining sets
The greedy defining sets of graphs were appeared first time in [M. Zaker, Greedy defining sets of graphs, Australas. J. Combin, 2001]. We show that to determine the greedy defining number of bipartite graphs is an NP-complete problem. This result answers affirmatively the problem mentioned in the previous paper. It is also shown that this number for forests can be determined in polynomial time....
متن کاملGreedy defining sets in graphs and Latin squares
Greedy algorithm sometimes uses more than χ(G) colors while coloring a graph G. A greedy defining set is an object to eliminate these extra colors so that the greedy coloring results in a minimum coloring of an order graph G. In this note we report some of the previous results as well as new results on greedy defining sets of graphs and Latin squares.
متن کاملRandomized Greedy Algorithms for Independent Sets and Matchings in Regular Graphs: Exact Results and Finite Girth Corrections
We derive new results for the performance of a simple greedy algorithm for finding large independent sets and matchings in constant degree regular graphs. We show that for r-regular graphs with n nodes and girth at least g, the algorithm finds an independent set of expected cardinality f(r)n−O ( (r−1) g2 g 2 ! n ) , where f(r) is a function which we explicitly compute. A similar result is estab...
متن کاملMore greedy defining sets in Latin squares
A Greedy Defining Set is a set of entries in a Latin Square with the property that when the square is systematically filled in with a greedy algorithm, the greedy algorithm succeeds. Let g(n) be the smallest defining set for any Latin Square of order n. We give theorems on the upper bounds of gn and a table listing upper bounds of gn for small values of n. For a circulant Latin square, we find ...
متن کاملAlgorithms for alpha-rate domination problems on weighted graphs
In this article, we investigate a domination set problem variant on vertex-weighted graphs. In the last few years, several algorithms have been presented for solving the minimum alpha and alpha-rate domination problem (also known as the positive influence dominating sets problem) on simple graphs. We recently proposed an algorithm for alpha-rate domination on weighted graphs based on randomised...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 23 شماره
صفحات -
تاریخ انتشار 2001